BAT数据分析师分享:0基础如何规划自己的大数据学习之路?

挖数网精选
挖数网精选
挖数网精选
221
文章
0
评论
2020-06-3013:06:00 评论 21 1991字
摘要

在美国,大数据工程师平均年薪达17.5万美元,在中国顶尖的互联网公司里,大数据工程师的薪酬比同级别的其他职位高出30%以上。DT时代来得太突然了,国内发展势头很猛,而大数据相关的人才却非常地有限。

在美国,大数据工程师平均年薪达17.5万美元,在中国顶尖的互联网公司里,大数据工程师的薪酬比同级别的其他职位高出30%以上。DT时代来得太突然了,国内发展势头很猛,而大数据相关的人才却非常地有限,在未来若干年内都会是供不应求的状况,因此程序员们,你们的春天到了!

转行也并非一朝一夕的事情,你需要对这个行业有一定的了解,并匹配一下自己的知识和能力结构。

以下是一位在BAT大数据领域打滚了N年后的分析师写下的一些总结和体会给想入行或是刚入行大数据的朋友借鉴学习!

一.成为数据分析师有哪些要求?

1. 理论知识要宽泛,涉及数学、市场和技术。要求及对数据敏感,包括统计知识、市场研究、模型原理等。

2. 常规分析工具的使用,包括数据库、数据挖掘、统计分析工具,常用办公软件(Excel、PPT、思维导图)等等。

3. 有一定的业务理解能力,能理解业务背后的商业逻辑。因为只有理解了商业问题,才能转换成数据分析的问题,从而满足部门的要求。

4. 数据报告和数据可视化的能力。数据分析得再好,如果不能以漂亮的方式"表达",成效也会大打折扣。

现在大多工作都需要你拥有逻辑分析能力,尤其是对数据的分析理解。在数据化运营理念深入的今天,BAT这样的大型互联网公司强调全员参与数据化运营,把数据分析当作一种能力在培训,也必定是未来趋势。

二.数据分析师所需具备的能力和知识

从数据分析的4个步骤来理解,数据分析的四个步骤:数据获取、数据处理、数据分析、数据呈现。

1. 数据获取

数据获取看似简单,但是需要把握对问题的商业理解,转化成数据问题来解决,直白点讲就是需要哪些数据,从哪些角度来分析,界定问题后,再进行数据采集。此环节,需要数据分析师具备结构化的逻辑思维。

  • 推荐书籍:《金字塔原理》、麦肯锡三部曲:麦肯锡意识、工具、方法
  • 推荐工具:思维导图工具(Xmind百度脑图等)

2. 数据处理

数据的处理需要掌握有效率的工具。

Excel及高端技能:日常工作通用,容易掌握,处理10万级别的数据很轻松。学习高端Excel需要哪些技能?学习excel是个循序渐进的过程:

  • 基础:简单的表格数据处理、打印、查询、筛选、排序
  • 函数和公式:常用函数、高级数据计算、数组公式、多维引用、function
  • 可视化图表:图形图示展示、高级图表、图表插件
  • 数据透视表、VBA程序开发

按照我习惯的方法,先过一遍基础,知道什么是什么,然后找几个case练习,多逛逛相关论坛,平常多思考如何用excel来解决问题,善用插件,还有记得保存。

  • Oracle和SQL sever:企业最常用的千万级别的数据库,熟练掌握SQL语言。

保持不断的技术学习,比如学习新流行的hadoop之类的分布式数据库来提升个人能力,对求职有帮助。

3. 分析数据

分析数据往往需要各类统计分析模型,如关联规则、聚类、分类、预测模型等等。

因此,熟练掌握一些统计分析工具不可免:

  • SPSS系列:老牌的统计分析软件,SPSS Statistics(偏统计功能、市场研究)、SPSS Modeler(偏数据挖掘),不用编程,易学。
  • SAS:经典挖掘软件,需要编程。
  • R:开源软件,新流行,对非结构化数据处理效率上更高,需编程。

4. 数据呈现

Tableau:可视化工具的鼻祖,对于处理好的数据可作自由的可视化分析,图表效果惊人,大数据BI工具FineBI:类同Tableau,可在前端做任意维度分析;数据可在前端继续处理(计算、筛选过滤等),可对接hadoop之类的大数据平台,数据处理性能较好。

BAT数据分析师分享:0基础如何规划自己的大数据学习之路?

很多数据分析工具已经涵盖了数据可视化部分,只需要把数据结果进行有效的呈现和演讲汇报,可用wordPPTH5等方式展现。

总结:大数据分析的工作是由大数据工程师设计的系统提供的大量数据。大数据分析包括趋势、模式分析和不同分类和预测系统的开发。因此,简而言之,大数据分析是对数据的高级计算。大型数据工程是系统设计、部署和计算平台的顶层结构。

三.学习信息分布

你的领域是什么,它的方向是什么?现在我们已经了解了我们可以从行业中选择的职业类型,让我们来决定哪一个区域适合你。这样,我们就可以确定你在这个行业中的位置。一般来说,你的教育背景和工作经验可以分为:基于我们的教育背景(包括利息,但不一定是你的大学教育相关)在计算机科学、数学、行业经验,新的数据,计算机科学家和工程师(数据域相关工作)因此,根据上述分类。

你可以拥有以下领域:"我是计算机科学的学生,但没有坚实的数学基础。"你对计算机科学或数学感兴趣,但是你没有经验,你将被定义为一个新的人。例2:"我是计算机科学的毕业生,我目前从事数据库开发。"

你的兴趣是计算机科学方向,你适合计算机工程师(数据相关工程)的角色。"我做数据科学家的统计工作"。你对数学领域很感兴趣,并且适合数据科学家的专业角色。所以,请参考你所在地的位置。

End.

来源:CSDN

本文为转载分享,如侵权请联系后台删除

  • 我的微信公众号
  • 微信扫一扫
  • weinxin
  • 我的微信公众号
  • 微信扫一扫
  • weinxin
匿名

发表评论

匿名网友 填写信息

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: