本文将简单总结下一些处理海量数据问题的常见方法。当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。
使用机器学习和深度学习预测股票价格(Python实现)
在本文中,我们将使用一家上市公司股票价格的历史数据。我们将实施一系列机器学习算法来预测该公司未来的股票价格,从平均和线性回归等简单的算法开始,然后转自动ARIMA和LSTM等高级技...
Python模拟ls命令
用python写一个ls命令脚本,以练习python基础。ls是Linux下最常用的命令之一,可以列出目录内文件即子目录名,可以配合众多参数使用。
logistic回归样本量多少合适?
样本量的估计可能是临床最头疼的一件事了,其实很多的临床研究事前是从来不考虑样本量的,至少我接触的临床研究大都如此。
如何写好一个专题的分析报告
如果说你只是盲目的写代码、做开发、做产品,而忽视它本身的商业价值的话,那很多事情都变得没有了意义。
电影短评情感分析:各大模型江湖再见
从传统的特征提取方面对比了BOW、TF-IDF、N-Gram技术,并使用不同的机器学习算法构建了不同的子模型,然后又采用了Stacking模型融合技术对短评情感进行了进一步的探索。...
利用SPSS检验数据是否符合正态分布
正态分布也叫常态分布,在我们后面说的很多东西都需要数据呈正态分布。下面的图就是正态分布曲线,中间隆起,对称向两边下降。下面我们来看一组数据,并检验"期初平均分" 数据是否呈正态分布...
评论